Hydrothermal synthesis and characterization of LaCrO₃

Wenjun Zheng,^{a,b} Wenqin Pang,^c Guangyao Meng^a and Dingkun Peng^a

^aDepartment of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China

^bDepartment of Chemistry, Nankai University, Tianjin 300071, P. R. China

^cKey Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun 130023, P. R. China

Chemistry, Jun University, Changenan 150025, F. K. China

Received 2nd June 1999, Accepted 30th June 1999

JOURNAL OF Materials CHEMISTRY

The synthesis of perovskite-type LaCrO₃ under mild hydrothermal conditions is reported. The synthesized product was characterized by means of XRD, IR, SEM and elemental analysis. The results indicated that the phase corresponded to orthorhombic perovskite-type LaCrO₃, and the product had a narrow particle size distribution in the range of 1–3 µm. The effect of hydrothermal conditions on the synthesis of LaCrO₃ was investigated. Under the hydrothermal conditions used, the optimum crystallization temperature was 240–260 °C. For the formation of pure LaCrO₃, a higher alkalinity ($\geq 8 \mod dm^{-3} \text{ KOH}$) is necessary because Cr³⁺ is significantly amphoteric. In the reactant mixing process, the optimum stirring time is 5–10 min because of the oxidation of CrO₂⁻ ion by oxygen in the air. CrO₄²⁻ does not show significant hydrothermal reactivity under the present conditions.

1 Introduction

High-temperature solid oxide fuel cells (SOFC) have been extensively investigated for the last two decades because of their potential use as clean and efficient power-generating devices. Alkaline earth metal substituted lanthanum chromates are known to be very promising interconnecting materials for SOFCs based on stabilized zirconia electrolytes.¹ However, LaCrO₃-based materials have poor sinterability because of their extremely refractory nature and higher volatility in oxidative atmosphere at elevated temperatures.² Many attempts have been made to obtain dense materials of LaCrO₃-based oxides, such as by using additives, etc.^{3,4} The additives are able to decrease the sintering temperature, but possible separation of small amounts of additional phases imposes certain limitations on the use of LaCrO3-based materials.⁵ For this reason, it is important to prepare LaCrO₃-based materials at lower temperatures. Recently, several preparation techniques based on solution chemistry methods, such as the citrate gel process,⁶ a co-precipitation technique⁵ and a complex compound process² have been employed.

Oxide powder, of high purity, narrow particle size distribution, high phase homogeneity, controlled particle morphology and high degree of crystallinity can be produced *via* hydrothermal processes. LaCrO₃-based materials have been prepared hydrothermally at 350–450 °C,⁷ but the influence of the hydrothermal conditions was not described in detail. Here, we have synthesized LaCrO₃ hydrothermally under more mild conditions, and have optimised the conditions.

2 Experimental

In the hydrothermal synthesis of LaCrO₃, freshly prepared La₂O₃·*x*H₂O was used as the lanthanum source. La₂O₃·*x*H₂O was prepared by adding NH₃ (aq) to an La(NO₃)₃ aqueous solution resulting in a white precipitate which was washed with de-ionized water and dried at 90 °C. The La₂O₃ content of this precipitate was measured by TG. The hydrothermal synthesis of LaCrO₃ was carried out in a stainless steel autoclave with a Teflon liner (*ca.* 20 cm³ capacity) under autogenous pressure. The typical synthesis procedure is as follows: a 0.2–0.3 mol dm⁻³ CrCl₃ solution was prepared in de-ionized water, and the

other reactants were added to the solution in sequence $La_2O_3 \cdot xH_2O$ followed by KOH to obtain a slurry with a molar composition $CrO_{1.5}$: $LaO_{1.5}$: KOH = 1-1.1:1:10-80. The slurry was transferred into an autoclave and heated at 260 °C for 7 days. After cooling, the product was filtered off, washed with dilute acetic acid and de-ionized water, and dried at ambient temperature.

X-Ray diffraction patterns were acquired from a Rigaku D/ MAX-IIIA powder diffractometer with a nickel-filtered Cu-K α (1.5418 Å) source. The IR spectrum was measured with a Nicolet 5DX-FT infrared spectrophotometer. The particle size and morphology were investigated by SEM using a Hitachi X-156 scanning electron microscope. Elemental analysis was carried out on the acidified filtrate using a Leeman Labs Plasma-Spec (I)-AES. Differential thermal analysis and thermogravimetry (DTA–TG) of La₂O₃·xH₂O were carried out using a Perkin-Elmer TG-7 thermal analyzer and DTA-700. Samples were heated from 25 to 1000 °C at a heating rate of 10 °C min⁻¹ with an air flow of 5 cm³ min⁻¹.

3 Results and discussion

3.1 XRD, SEM and IR analysis

The X-ray diffraction pattern of LaCrO₃ powder processed at 260 °C in 8.5 mol dm⁻³ KOH for 7 days is shown in Fig. 1. A perovskite-type LaCrO₃ phase is formed free of impurity phases and with a high degree of crystallinity. Based on X-ray diffraction data, LaCrO₃ crystallized in the orthorhombic space group *Pbnm*⁸ with unit cell parameters a=5.484, b=5.524, and c=7.767 Å. The filtrate following hydrothermal synthesis was subjected to elemental analysis for La³⁺ and Cr³⁺. When the Cr/La ratio in the initial solute is >1.05, it is observed that lanthanum is reacted completely (XRD and ICP measurements) and the Cr/La ratio of the product is close to stoichiometric for LaCrO₃.

Fig. 2 shows the morphology of LaCrO₃ according to SEM. The LaCrO₃ crystals have a cubic crystal habit and a small particle size range of $1-3 \mu m$. The IR spectrum of LaCrO₃ powder (Fig. 3) shows two strong absorption bands around 430 and 610 cm⁻¹ which can be assigned to O–Cr–O deformation and Cr–O stretching vibrations, respectively.⁹

J. Mater. Chem., 1999, 9, 2833–2836 2833

Fig. 1 X-Ray powder diffraction pattern of LaCrO_3 processed in 8 mol dm $^{-3}$ KOH at 260 $^\circ C$ for 7 days.

Fig. 2 SEM photograph of LaCrO₃.

3.2 Effect of crystallization temperature

Fixing the alkalinity, reaction and stirring times to 8.5 mol dm^{-3} KOH, 7 days and 10 min, respectively, the effect of temperature on the synthesis of LaCrO₃ was investigated. The formation of LaCrO₃ was observed by XRD. As shown in Fig. 4, a qualitative estimate of the crystallinity of the products obtained at different temperatures is estimated by monitoring the intensity of the 100% intensity

2834 J. Mater. Chem., 1999, **9**, 2833–2836

Fig. 4 Influence of crystallization temperature on the crystallinity of $LaCrO_3$ processed in 8 mol dm⁻³ KOH for 7 days.

reflection of LaCrO₃, with the product synthesized at 280 °C regarded as 100% crystalline. In the experiments, the lowest temperature at which LaCrO₃ was formed was 120 °C with hexagonal La₂O₃ of low crystallinity only observed after the initial solute was heated to 100 °C for 7 days. In the temperature range 120–220 °C, the crystallinity is increased significantly with increasing temperature while the crystallinity increase is less marked in the temperature range 220–280 °C.

These observations indicate that the growth and recrystallization speeds of LaCrO₃ crystals are increased with increasing temperature. In terms of La(OH)₃, lower temperatures may be advantageous to the crystallization of LaCrO₃ since the solubility of La(OH)₃ is decreased at higher temperatures.¹⁰ However, experimental results indicated that the crystallinity of LaCrO₃ was poor at lower crystallization temperatures. While the solubility of La(OH)₃ is reduced to some extent at higher temperatures, the growth and the recrystallization speeds of LaCrO₃ are increased significantly. Therefore, higher crystallization temperatures favor the crystallization process of LaCrO₃ crystals.

For some advanced applications of LaCrO₃-based materials, using temperatures above $280 \,^{\circ}$ C is not necessary because generally ceramic forms of the materials are used. In addition, Teflon liners can not be used above $280 \,^{\circ}$ C. As a consequence the optimum crystallization temperature is *ca*. $240-260 \,^{\circ}$ C for the synthesis of LaCrO₃-based materials powders.

3.3 Effect of alkalinity

The effect of alkalinity on the hydrothermal synthesis of LaCrO₃ was investigated when alkalinity was varied between 2–16 mol dm⁻³ KOH (KOH/Cr=10–80), with temperature and reaction and stirring times fixed at 260 °C, 7 days and 10 min, respectively, and results are given in Table 1. No LaCrO₃ formed below 6 mol dm⁻³ KOH, with La₂O₃ and CrOOH detected as the main phases in the products. However, it was observed that some La₂O₃ remained in the products when the alkalinity was >10 mol dm⁻³ KOH.

This suggests that the effect of alkalinity is associated with the perovskite-type structure and the properties of Cr^{3+} ions. The ABO₃ type perovskite structure can be described as a framework of corner-shared BO₆ octahedra that contains Acations in 12-coordinate sites. Therefore, the hydrothermal activity of B-cations significantly influences the hydrothermal synthesis of perovskite-type oxides. It is an essential prere-

Table 1 Influence of alkalinity on the hydrothermal synthesis of ${\rm LaCrO}_3$

KOH concentration/mol dm ⁻³	Reaction products (XRD)
6	La(OH) ₃ , CrOOH, Cr ₂ O ₃
8	LaCrO ₃
9	LaCrO ₃
10	LaCrO ₃ , La(OH) ₃
12	LaCrO ₃ , La(OH) ₃

quisite to obtain perovskite-type oxides that the hydroxycomplex of the B-cation condenses *via* dehydration in alkaline medium. The hydroxy-complex of the B-cation, being more amphoteric, condenses less readily than that of A at a given alkalinity because the complex is more stable. A high alkalinity is thus required when the B-cation shows significant amphoterism as is true for Cr^{3+} . Here formation of pure LaCrO₃ requires $\geq 8 \mod dm^{-3} KOH$ medium.

Besides amphoterism, Cr^{3+} ions also show reducing properties to a certain extent in alkaline media. The fact that the hydrothermal synthesis of LaCrO₃ has a narrow optimum alkalinity (8–10 mol dm⁻³) may be explained by this reducing property. The reaction of CrO_2^- ion as a reductant can be expressed by eqn. (1):¹⁰

$$\operatorname{CrO}_4^{2-} + 2\operatorname{H}_2\operatorname{O} + 3e^- \Leftrightarrow \operatorname{CrO}_2^- + 4\operatorname{OH}^- \quad E_{298 \text{ K}}^\circ = -0.13 \text{ V}$$
(1)

where CrO_2^- is a simplified representation of the Cr(OH)_6^{3-} hydroxy-complex.¹⁰ In the present hydrothermal system, O₂ can act as an oxidant, and shows the following reduction reaction [eqn. (2)].¹⁰

$$O_2 + 2H_2O + 4e^- \Leftrightarrow 4OH^- \quad E_{298 \text{ K}}^\circ = -0.401 \text{ V}$$
 (2)

At room temperature, the reaction of O_2 with CrO_2^- is thermodynamically favored given the large difference of standard electrode potentials $(E^{\circ}_{eqn. (2)} - E^{\circ}_{eqn. (1)} = 0.531 \text{ V}).$ However, at room temperature, CrO_2^- is generally oxidized using stronger oxidants, such as $H_2O_2^{-10}$ Given that the autoclave is ca. 80% filled, the amount of oxygen in the hydrothermal system is *ca*. 3.27×10^{-5} mol, according to the ideal gas law. According to eqns. (1) and (2), three and four electrons are involved, respectively, and thus 4.36×10^{-5} mol CrO_2^- can be oxidized in the synthesis process, which is *ca*. 0.9–1.3 mol% of the total Cr^{3+} ions in the solute. Oxidization of CrO_2^{-} ions was supported by the nature of the filtrates. After synthesis, the filtrates show the characteristic yellow color of CrO_4^{2-} ions when the alkalinity is >10 mol dm⁻³ KOH. Additionally the filtrates were subjected to a test for CrO_4^2 using Pb(NO₃)₂ for which a yellow PbCrO₄ precipitate was formed. However, oxidation of CrO2⁻ ions during the crystallization process does not satisfactorily explain the presence of La_2O_3 when the alkalinity is >10 mol dm⁻ KOH. Oxidization of CrO_2^- ions by oxygen in the air is thus likely according to eqns. (1) and (2), and the oxidoreduction of CrO_2^- ion with O_2 is expressed by eqn. (3).

$$4CrO_2^- + 3O_2 + 4OH^- \Leftrightarrow 4CrO_4^{2-} + 2H_2O$$
 (3)

This reaction is favored by increased alkalinity. For this reason, the influences of stirring time and Cr/La ratio on the hydrothermal synthesis of LaCrO₃ were investigated.

The effect of stirring time was investigated in the range 5-20 min. In this test, alkalinity, Cr/La ratio, reaction time and temperature were fixed at $12 \text{ mol dm}^{-3} \text{ KOH}$, 1:1, 7 days and 260 °C, respectively. In order to significantly observe oxidation of CrO₂⁻, the alkalinity and Cr/La ratio were changed from 8.5 mol dm^{-3} KOH and 1.1 to 12 mol dm $^{-3}$ KOH and 1, respectively. As shown in Fig. 5, pure LaCrO₃ was observed only when the stirring time was 5 min. At times > 5 min, La₂O₃ was present, and the intensities of its XRD reflections were enhanced with increased stirring times; i.e. the oxidation of CrO_2^{-} ions is increased with the increase of stirring time. Therefore, it is clear that CrO₂⁻ ions are oxidized partially by oxygen in the air during the reactant mixing process. For the synthesis of LaCrO₃, the raw solute was stirred for only 3-5 min to ensure its homogeneity. Even under these conditions oxidation of \mbox{CrO}_2^{-} ions occurs to some extent. However, La₂O₃ remaining in the product was not detected when the stirring time is 5 min. This is likely to be associated with the formation of LaCrO3 and the characteristics of the perovskite-

Fig. 5 Influence of stirring time on the hydrothermal synthesis of $LaCrO_3$; + represents La_2O_3 .

type structure. In formation of LaCrO₃, the equilibrium of eqn. (3) shifts to the left to a certain extent, but this is not very significant since La₂O₃ is observed in the product when stirring time is >5 min. On the other hand, defects are generally readily accommodated within the perovskite-type structure; it can be postulated that CrO_4^{2-} ions may occupy B-sites to an extent instead of Cr^{3+} ions. However, the B-site requires an octahedral six-coordinate ion, whereas CrO_4^{2-} has a tetrahedral structure. For such a substitution in which a large distortion is introduced into the LaCrO₃ crystal lattice, a high activation energy is required. However, under the present hydrothermal conditions, the supplied energy is modest owing to the low crystallization temperature. Thus CrO_4^{2-} substitution for B-site Cr³⁺ ion is likely to be insignificant. For this reason, the controlled stirring process is one of the key points for the synthesis of LaCrO₃.

In order to confirm further the influence of the oxidation of CrO_2^- in the stirring process, the effect of Cr/La ratio was investigated and was within the range 1:1-1.2:1, and the stirring time was fixed at 20 min. The other conditions were similar to the stirring time experiments. We found that pure LaCrO₃ can form only when Cr/La=1.2, and the amount of La₂O₃ formed increased with a decrease in the Cr/La ratio. In the mixing process, CrO_2^- ion can be oxidized partially, but a high enough CrO_2^- concentration ensures that the Cr/La ratio in the reactive system will be close to the stoichiometry of LaCrO₃. The reducing property of Cr^{3+} ion means that La₂O₃ remains when the alkalinity is >10 mol dm⁻³ KOH. In the present work, CrO_4^{2-} ion was not incorporated into

In the present work, CrO_4^{2-} ion was not incorporated into any of the solid products (XRD analysis), probably owing to the high activation energy required for its incorporation into a perovskite type structure.

4 Conclusions

The synthesis of LaCrO₃ has been shown to be feasible under mild hydrothermal conditions. In this work, the optimum crystallization temperature was 240–260 °C. Since Cr³⁺ shows significant amphoterism, a high alkalinity ($\geq 8 \mod dm^{-3}$ KOH) is necessary to obtain pure LaCrO₃. In mixing the reagents, the optimum stirring time is 5–10 min owing to oxidation of CrO₂⁻ ion by oxygen in the air. CrO₄²⁻ ion does not show significant hydrothermal reactivity under the present conditions.

Acknowledgements

This work was partially supported by the National Science Foundation of China.

J. Mater. Chem., 1999, 9, 2833–2836 2835

References

- N. Sakai, Ceramics (in Japanese), 1995, 30, 329. 1
- P. S. Devi and M. S. Rao, J. Solid State Chem., 1992, 98, 237.
 G. M. Christie, J. Eur. Ceram. Soc., 1994, 14, 163. 2
- 3
- 4
- G. M. CHING, J. Eur. Ceram. Soc., 1994, 14, 163.
 N. Sakai, T. Kawada, H. Yokokawa and M. Dokiya, J. Am. Ceram. Soc., 1994, 76, 609.
 N. Sakai, T. Kawada, H. Yokokawa and M. Dokiya, J. Ceram. Soc. Jpn., 1993, 101, 1195.
 H. M. Zhang, V. Tanaka, M. Yang, K. Kawada, 5
- H. M. Zhang, Y. Teraoka and N. Yamazoe, J. Ceram. Soc. Jpn., 6 1988, 96, 272.
- 7 M. Yoshimura, S. T. Song and S. Somiya, Yogyo-Kyokai Shi, 1982, **90**, 91.
- (a) JCPDS Card: 24-1016; (b) J. J. Kingsley and L. R. Pederson, 8
- (a) JCPDS Cald. 24-1010, (b) J. J. Kingsley and L. K. Federson, Mater. Lett., 1993, 18, 89.
 R. N. Nyguist and R. O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, INC. (London) Ltd., 1971.
 X. Z. Cao, W. H. Zhang and R. G. Du, in Inorganic Chemistry (J. Chemistry)
- (II), Chinese Education Publication Agency, Beijing, 2nd edn., 1992.

Paper 9/04399C